差异隐私的混合模型(Avent等人2017年)是对本地模型的增强个人。在这里,我们研究了混合模型中的机器学习问题,其中策展人数据集中的n个个体是从与一般人群(本地代理商)中的一个分布中得出的。我们为这个转移学习问题提供了一个一般方案 - 子样本测试 - 育问题,该问题将任何策展人模型的DP学习者降低到了混合模型学习者,在这种情况下,使用迭代的亚采样和重新授予了n个示例。基于乘法算法的平滑变化(由Bun等人,2020年引入)。我们的方案具有样本复杂性,依赖于两个分布之间的卡方差异。我们对私人减少所需的样本复杂性进行了最差的分析范围。为了降低上述样本复杂性,我们提供了两个特定的实例,我们的样本复杂性可以大大降低(一个实例是数学分析的,而另一个实例则在经验上 - 经验上),并为后续工作构成了多个方向。
translated by 谷歌翻译
We propose an efficient method to learn both unstructured and structured sparse neural networks during training, using a novel generalization of the sparse envelope function (SEF) used as a regularizer, termed {\itshape{group sparse envelope function}} (GSEF). The GSEF acts as a neuron group selector, which we leverage to induce structured pruning. Our method receives a hardware-friendly structured sparsity of a deep neural network (DNN) to efficiently accelerate the DNN's evaluation. This method is flexible in the sense that it allows any hardware to dictate the definition of a group, such as a filter, channel, filter shape, layer depth, a single parameter (unstructured), etc. By the nature of the GSEF, the proposed method is the first to make possible a pre-define sparsity level that is being achieved at the training convergence, while maintaining negligible network accuracy degradation. We propose an efficient method to calculate the exact value of the GSEF along with its proximal operator, in a worst-case complexity of $O(n)$, where $n$ is the total number of groups variables. In addition, we propose a proximal-gradient-based optimization method to train the model, that is, the non-convex minimization of the sum of the neural network loss and the GSEF. Finally, we conduct an experiment and illustrate the efficiency of our proposed technique in terms of the completion ratio, accuracy, and inference latency.
translated by 谷歌翻译
社交媒体平台(SMP)利用算法过滤(AF)作为选择构成用户供稿的内容的一种手段,以最大程度地提高其奖励。与自然/公平内容选择相比,选择性选择要在用户供稿上显示的内容可能会产生一定程度的影响,无论是对用户决策制定的影响,无论是次要的还是主要的,对用户的决策制定。正如我们在过去十年中所见证的那样,算法过滤可能会引起有害的副作用,从偏见的个人决定到整个社会的决定,例如,将用户的注意力转移到了是否获得COVID-19公众选择总统候选人。由于官僚主义,法律事务和财务考虑,政府不断地试图调节AF的不良影响通常很复杂。另一方面,SMP试图监视自己的算法活动,以避免因超过允许阈值而被罚款。在本文中,我们可以数学上对该框架进行形式化,并利用它来构建数据驱动的统计算法,以调节AF随着时间的流逝而偏向用户的信念,以及样本和复杂性保证。我们表明,我们的算法对潜在的对抗用户具有强大的功能。该最先进的算法可以由当局用作外部监管机构,也可以由SMP用于自我调节。
translated by 谷歌翻译